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Recent experiments in hippocampal neurons have demonstrated the existence of compartments with elevated
levels of second messenger molecules such as cyclic AMP. This compartmentalization is believed to be
necessary to ensure downstream signaling specificity. Here we use analytical and numerical techniques to
investigate the diffusion of a second messenger in the soma and in the dendrite of a neuron. We obtain
analytical solutions for the diffusion field and examine the limit in which the width of the dendrite is much
smaller than the radius of the soma. We find that the concentration profile depends both on the degradation rate
and the width of the dendrite and that compartmentalization can be indeed be achieved for small width to soma
radius ratio.

DOI: 10.1103/PhysRevE.80.041901 PACS number�s�: 87.10.Ca, 87.15.Vv, 87.16.A�

I. INTRODUCTION

A large variety of cellular processes are regulated by the
diffusible second messenger cyclic adenosine monophos-
phate �cAMP�. This messenger is generated by membrane
bound adenylyl cyclases �ACs� which, in turn, are activated
by external signals. cAMP is degraded by phosphodi-
esterases �PDEs�, which can be localized to specific cell lo-
cations or can be diffusible. The fact that cAMP is able to
activate multiple pathways raises the question of signal
specificity: how can one avoid the activation of undesirable
pathways following the input to a specific pathway? One
way to achieve signaling specificity is to have cAMP levels
that are elevated in small spatial compartments but remain
low in the rest of the cell. Indeed, an increasing number of
experiments had shown that there exist cAMP microdomains
in several different cell types, including cardiac myocytes
�1,2�, kidney cells �3�, and neurons �4�.

This compartmentalization is surprising since cAMP is a
small hydrophilic molecule, which diffuses very fast with a
diffusion constant of D=100�700 �m2 /s. Thus, with no
restriction on diffusion, AC activation will quickly lead to an
increase in the global cAMP level. To prevent the indiscrimi-
nate activation of multiple pathways, there needs to be a
mechanism that restricts the diffusion away from the micro-
domain. Possible mechanisms to create compartments with
elevated levels of cAMP include physical barriers, including
cell membranes and intercellular structures, and nonuniform
degradation. An example of the latter mechanism was sug-
gested for myocytes where physical barriers appear not to
play a significant role. In this mechanism, cross-talk is
avoided by colocalizing the final targets of the signaling
pathway with the ACs and by spatially separating the source
of cAMP from regions with an elevated PDE concentration.
In our previous work, we constructed a mathematical model
to investigate the viability of this mechanism. Using an ana-
lytical approach, we derived expressions for the steady-state
cAMP concentration field and found conditions for which
this mechanism can lead to signal specificity �5�.

Here, we will again examine second messenger compart-
mentalization using analytical techniques but will now focus

on the cAMP concentration profiles in neurons. We are mo-
tivated by recent experiments in rat hippocampal slices �6�
which demonstrated that, after stimulation, cAMP accumu-
lates preferentially at the distal dendrites and that the soma
maintains a low level of cAMP. Thus, sharp gradients of
cAMP exist at the junction between the dendrites and the
soma and it was suggested that the two domains with sharply
different cAMP concentrations ensure signal specificity.

Using a simple representation of the cell geometry, we
will present asymptotic analytical solutions that quantify
how cell shape and degradation rates affect the spatial cAMP
concentration profiles. This will be done both in two dimen-
sion and three dimension �3D�, the latter assuming axial
symmetry; for ease of presentation, we have placed the 3D
results in Appendix B. Our model does not consider down-
stream pathways, such as protein kinase A �PKA�, but is able
to capture the salient ingredients required for second messen-
ger compartmentalization. Our main result, in agreement
with the numerical findings of Neves et al. �6�, is that a sharp
cAMP gradient between the soma and the dendrite requires a
minimum level of signal degradation. Furthermore, we find
that the cAMP gradient at the junction depends critically on
the width of the dendrite.

II. MODEL

As in the numerical work of Neves et al. �6�, we assume
a neuron with the simplified geometry shown in Fig. 1. It
consists of a circle with radius R, representing the cell body,
and a protruding rectangle with length L and half width w,
representing the dendrite. The 3D version, where the rect-
angle is replaced by a right circular cylinder, is presented in
Appendix B. Since the width of the dendrite is much smaller
than the radius of the soma, i.e., w�R, we can approximate
the connecting part of the circle and the rectangle to be a
straight line. Thus, we have

w = R sin �0 � R�0, �1�

where �0 is defined in Fig. 1. Note that the surface-to-volume
ratio for the dendrite is much larger than for the soma.

PHYSICAL REVIEW E 80, 041901 �2009�

1539-3755/2009/80�4�/041901�7� ©2009 The American Physical Society041901-1

http://dx.doi.org/10.1103/PhysRevE.80.041901


For simplicity, we will assume that the PDEs are uni-
formly distributed in both the soma and the dendrite. Thus,
the concentration in the circle C1 and in the rectangle C2
obey the diffusion equation with a homogeneous degradation
rate �,

�C1�r,�,t�
�t

= D�2C1 − �C1, �0 � r � R,− � � � � �� ,

�2�

�C2�x,y,t�
�t

= D�2C2 − �C2, �0 � x � L,− w � y � w� ,

�3�

where D is the diffusion constant of cAMP and where we
have used a Cartesian coordinate system for the dendrite and
a polar coordinate system for the soma.

It has been shown that the cAMP production machinery is
distributed on both the soma and the dendrite membrane with
little �7,8� to no �9� observable spatial heterogeneity. Thus, it
is reasonable to assume that the neuron has a constant cAMP
source flux, f with unit 1 / �s �m�, on the entire membrane.
Therefore, the boundary conditions on the various parts of
the membrane read as

�C1�R,�,t�
�r

=
f

D
, ��0 � � � 2� − �0� , �4�

�C2�L,y,t�
�x

=
f

D
, �− w � y � w� , �5�

�C2�x, � w,t�
�y

= �
f

D
, �0 � x � L� . �6�

We require that the concentration at the connection between
the soma and the dendrite is continuous. Thus, under the
condition that w�R, we have

C1�R,�,t� = C2�0,y,t�, �− �0 	 � 	 �0� , �7�

�C1�R,�,t�
�r

=
�C2�0,y,t�

�x
, �− �0 	 � 	 �0� , �8�

where y�R�.

III. RESULTS

We will focus here on steady-state solutions, which can be
found by setting the left-hand sides of Eqs. �2� and �3� to
zero. Then, general steady-state solutions for C1�r ,�� and
C2�x ,y� can be obtained as

C1�r,�� = �
m=0




Bm
Im�r/l�
Im� �R/l�

cos m� +
f

��D

� − �0

�

I0�r/l�
I0��R/l�

− �
n=1



2f

��D

sin n�0

n�

In�r/l�
In��R/l�

cos n� , �9�

C2�x,y� = �
n=0




An�ex��1/l�2+�n�/w�2
+ e�2L−x���1/l�2+�n�/w�2

�

�cos	n�
�

�0

 +

f
��D

cosh�x/l�
sinh�L/l�

+
f

��D

cosh�y/l�
sinh�w/l�

,

�10�

where l=�D
� is a decay length. Here, and in the remainder of

the paper, In represents the modified Bessel function of the
first kind, and � represents the derivative of the argument.
The coefficients Bm are determined by An through Eq. �8�,

B0 =
l

2�
�

−�0

�0

g���d� , �11�

Bm =
l

�
�

−�0

�0

g���d�, m = 1,2,3, . . . , �12�

where function g��� is the gradient at the connection of the
circle and the rectangle, i.e., a function of An, for −�0	�
	�0

g��� =
�C2�0,y�

�x
= �

n=0




An�	1

l

2

+ 	n�

w

2

��1 − e2L��1/l�2+�n�/w�2
�cos	n�

�

�0

 . �13�

To determine An, we can apply the continuity condition �7�,
which results in a set of countable infinite linear equations
for An: MA=a, where M and a are a matrix and column
vector with infinite dimension determined by Eq. �7�, respec-
tively, and where A is the vector A0 ,A1 , . . ..

The resulting linear algebra problem is difficult to solve,
even numerically. Fortunately, as we will see below, for thin
dendrites the series converges rapidly and the first coefficient
A0 can be calculated in the limit w=�0→0. Let us use c1,2 to
represent the concentrations for this limiting case, which can
be related to C1,2 respectively, as follows:

c1�r,�� = lim
�0→0

C1�r,�� , �14�

R

-w
0,0O

0θ

y

w

xL

Soma Dendrite

FIG. 1. The geometry considered in this paper. The circle with
radius R represents the soma, and the rectangle with length L and
half width w represents the dendrite. The sources for the second
messengers are uniformly distributed on the perimeter, and the deg-
radation molecules are uniformly distributed in both the soma and
the dendrite.
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c2�x� = lim
w→0

�
−w

w

C2�x,y�dy . �15�

The diffusion equation and boundary condition for c1 are
identical to Eqs. �2� and �4�, while the diffusion equation for
c2 becomes one dimensional,

0 = D
d2c2

dx2 − �c2 + 2f , �16�

with as boundary condition

dc2�L�
dx

= lim
w→0

�
−w

w f

D
dw = 0. �17�

The continuity equations �7� and �8� at the junction of the
dendrite and the soma reduces to

c2�0� = lim
�0→0

�
−�0

�0

Rc1�R,��d� = 0, �18�

�c1�R�
�r

=
f

D
+

J

DR
���� , �19�

dc2�0�
dx

=
J

D
, �20�

where J denotes the flux from the dendrite to the soma with
units 1 /s. The proof of the last identity in Eq. �18� is given in
Appendix A. c2�0�=0 reflects the fact that in this extreme
case, molecules at the junction flow into the soma and never
flow back to the dendrite. Solving the above equations leads
to an analytic expression

J = 2fl tanh�L/l� , �21�

c1�r,�� =
f

��D

I0�r/l�
I0��R/l�

+
f

�R

tanh�L/l�
�

I0�r/l�
I0��R/l�

+
2f

�R

tanh�L/l�
�

�
n=1



In�r/l�
In��R/l�

cos n� , �22�

c2�x� =
2f

�
−

2f

�

ex/l

1 + e2L/l −
2f

�

e�2L−x�/l

1 + e2L/l . �23�

Comparing the coefficients of c1,2 and C1,2 through Eqs.
�14� and �15�, we find

A0 = −
f

�w

1

1 + e2L/l , �24�

B0 =
f

�R

tanh�L/l�
�

+ o�w� , �25�

Bm =
2f

�R

tanh�L/l�
�

+ o�w�, m = 1,2,3, . . . . �26�

Therefore, we can obtain an approximate form of the con-
centration in the soma

C1�r,�� = �
n=1



2f

�R

tanh�L/l�
�

In�r/l�
In��R/l�

cos n�

− �
n=1



2f

��D

sin n�0

n�

In�r/l�
In��R/l�

cos n�

+
f

�R

tanh�L/l�
�

I0�r/l�
I0��R/l�

+
f

��D

� − �0

�

I0�r/l�
I0��R/l�

+ o�w� , �27�

and in the dendrite

C2�x,0� =
f

��D

cosh�x/l�
sinh�L/l�

+
f

��D

1

sinh�w/l�

−
f

�w

cosh��L − x�/l�
cosh�L/l�

+ o	 1

w

 . �28�

Furthermore the gradient at the junction reads in this limit

�C2�0,0�
�x

=
f

w��D
tanh�L/l� + o	 1

w

 . �29�

In Fig. 2 we plot the approximate solution in the dendrite
as a function x �solid line�, along with the full solution ob-
tained by numerically solving the model �dotted line� for two
different dendrite widths. As we can see, the approximate
concentration is quite close to the numerical solution away
from the soma but starts to deviate closer to the soma. The
analytical solution is a function of w, of course, and ap-
proaches the numerical solution as w get smaller. This is also
demonstrated in Fig. 3�a�, where we plot the gradient at the
junction of the soma and the dendrite for both the full solu-
tion �circles� and our analytical approximation �solid line�.
Clearly, the error between the two results plotted in Fig. 3�b�
becomes smaller as the width of the dendrite decreases, con-
sistent with the expectation that the analytical solution con-
verges to the full solution as w→0. We note here that our

10
0

10
1

10
2

10
0

10
1

10
2

[c
A

M
P

]
(µ

m
−2

) A

10
0

10
1

10
2

10
−1

10
0

distance from soma (µm)

[c
A

M
P

]
(µ

m
−2

)

B

analytical
numerical

analytical
numerical

FIG. 2. �Color online� A comparison between the analytical ap-
proximation �solid line� and the numerical result �dotted line� for
the cAMP concentration in the dendrite along the symmetry line
for �a� w=0.1 �m and �b� w=1 �m. Other parameters used
are R=10 �m, L=100 �m, f =20 / �s �m� , D=200 �m2 /s ,
�=10 s−1.
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results can be extended to three dimensions as shown in
Appendix B.

IV. DISCUSSION

The main advantage of having analytical expressions for
the concentrations in the two compartments and the concen-
tration gradient at the junction is that it becomes easier to
assess the effect of the system parameters on compartmen-
talization. From Eq. �27�, we see that the concentration at the
center of the soma can be approximated by

C1�0,0� �
f

I0��R/l�
	 tanh�L/l�

��R
+

1

��D

 . �30�

Upon inspection of this equation, we can conclude that the
cAMP concentration in the soma is largely independent of
the length of the dendrite provided that this length is much
larger that the decay length l. Furthermore, the concentration
is independent of the width of the dendrite and, thus, for
small w and L
 l, the soma concentration depends only
weakly on the geometry of the dendrite and is mostly deter-
mined by the degradation rate �.

A similar analysis can be carried out for the concentration
in the middle of the dendrite �x=L /2�, where we find from
Eq. �28�,

C2�L/2,0� �
f

�w
	1 −

cosh�L/�2l��

cosh�L/l�

 +

f

��D

cosh�L/�2l��

sinh�L/l�
.

�31�

Thus, the cAMP level in dendrite decreases as the degrada-
tion rate increases but is also strongly dependent on the
width of the dendrite. We note that for L
 l the concentra-
tion reduces to the simple form C2�L /2,0�� f

�w . We can also
conclude that the largest gradient of cAMP occurs at the
junction between the soma and the dendrite and Eq. �29�

shows that this gradient is inversely proportional to w and to
the square root of the diffusion constant and the degradation
rate. It also shows that the radius of cell body has no effect
on the gradient. In fact, for L
 l the gradient becomes inde-
pendent of the length of the dendrite and the only geometric
dependence is through the width

�C2�0,0�
�x � f

w��D
.

Finally, we have performed numerical simulations, using
MATLAB’s PDE Toolbox, to confirm the role of degradation
and geometry on the concentration fields in the soma and
dendrite. Figure 4 shows the cAMP concentration in a color
scale in the absence of degradation ��=0� using C1�r ,��
=C2�x ,y�=0 as initial condition. Clearly, this is an unrealis-
tic situation as the concentration would increase indefinitely
as long as the flux is constant. Nevertheless, we can investi-
gate the dependence of the cAMP fields in the two compart-
ments by plotting the concentration at a particular time. This
is done in Fig. 4 for four different values of w and T
=300 s. We can see that the concentration in the dendrite
increases significantly if the width becomes smaller. How-
ever, in support of our analysis above, the concentration in
the soma increases as well and the resulting high concentra-
tion in both the soma and the dendrite would make it difficult
to achieve signal specificity. In Fig. 5, we show the steady-
state cAMP concentration for the same set of dendrite widths
and a nonzero degradation constant. Again, the results are
shown for T=300 s, chosen such that the concentration has
reached a steady state, starting at the same initial condition
as in Fig. 4. As is evident from the figures, the introduction
of cAMP degradation is able to drastically reduce the con-
centration of cAMP in the soma while maintaining a high
cAMP level in thin dendrites. The results also show that w
has little effect on cAMP level in the soma, again verifying
our analytic results above.

In summary, we have derived analytical solutions for the
cAMP concentration field in a simplified neuronal geometry,
where the difference in surface-to-volume ratio between the
soma and the dendrite, coupled with a constant cAMP flux,
leads to compartmentalization �6�. We find that the expres-
sion becomes particularly easy to analyze in the limit of thin
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FIG. 3. �Color online� �A� A comparison between the analytical
approximation �solid line� and the numerical result �circles� for the
gradient at soma-dendrite junction as a function of w. �B� The
corresponding error as a function of w−1. Other parameters used
are R=10 �m, L=100 �m, f =20 / �s �m� , D=200 �m2 /s,
�=10s−1.
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FIG. 4. �Color online� Numerical results without degradation
mechanism for different widths of the dendrite w
=0.5,1.0,1.5,2.0 �m �from left to right, respectively�. The radius
of the soma was taken to be R=10 �m and the length of the den-
drite was chosen to be L=100 �m. Other parameters are f
=20 / �s �m� , D=200 �m2 /s , T=300 s.
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dendrites. Our solutions show that a sufficient level of deg-
radation, along with a dendrite with a width that is much
smaller than the radius of the soma, does lead to cAMP
compartmentalization and offers a mechanism for signal
specificity.
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APPENDIX A: PROOF OF EQ. (18)

Here, we will present a proof of the last identity in Eq.
�18� lim�0→0 �−�0

�0 Rc1�R ,��d�=0. From Eq. �2� with the left-
hand side set to zero and the boundary condition �19�, we
can obtain the general solution for c1 at the junction −�0
	�	�0

c1�R,�� = 
 f
��D

+
1

2�

J
��DR

� I0�R/l�
I0��R/l�

+
1

�

f

D�
n=1



In�R/l�

�R/l�In��R/l�
cos n� , �A1�

where J is an unknown constant. The first term of c1�R ,�� is
independent of �, so the limit of the first term’s integration
gives zero. Thus, we need to prove lim�0→0 Q��0�=0, where

Q��0�=�−�0

�0 �n=1

 In�R/l�

�R/l�In��R/l�cos n�d�. Since we cannot change
the order of the integral with the infinite summation, we will
find the upper and lower bounds of Q��0� instead. It is easy
to show that for positive arguments x

n + 1

n�n + 1� +
x2

2

	
In�x�
xIn��x�

	
1

n
, n = 1,2,3, . . . . �A2�

Thus, we have

� In�x�
xIn��x�

cos n� −
cos n�

n
�

� � In�x�
xIn��x�

−
1

n
��cos n��

� � In�x�
xIn��x�

−
1

n
�

=
1

n
−

In�x�
xIn��x�

	
1

n
−

n + 1

n�n + 1� +
x2

2

=
x2

2

1

�n + 1�n2 +
x2

2
n

	
x2

2

1

�n + 1�n2 . �A3�

Therefore, for each n,
In�x�
xIn��x�cos n� is bounded as follows:

cos n�

n
−

x2

2

1

�n + 1�n2 	
In�x�
xIn��x�

cos n� 	
cos n�

n

+
x2

2

1

�n + 1�n2 . �A4�

Thus, the upper and lower bounds of the infinite summation
is given by

�
n=1



cos n�

n
�

1

2
	R

l

2

�
n=1



1

�n + 1�n2

=
1

2
log

1

2 − 2 cos �
�

1

2
	R

l

2	�2

6
− 1
 . �A5�

By integrating Eq. �A5� from −�0 to �0, we find the upper
and lower bounds of Q��0�

i�Li2�e−i�0� − Li2�ei�0�� − 	R

l

2	�2

6
− 1
�0 	 Q��0�

	 i�Li2�e−i�0� − Li2�ei�0�� + 	R

l

2	�2

6
− 1
�0, �A6�

where Li2 denotes the dilogarithm function. Taking the limit
of �0→0 in Eq. �A6�, both the lower and upper bounds go
to zero, so that lim�0→0 Q��0�=0 and, hence,
lim�0→0 �−�0

�0 Rc1�R ,��d�=0.

APPENDIX B: SOLUTIONS FOR 3D

The analytic solutions found in two dimensions can be
extended to a three-dimensional geometry. By rotating Fig. 1
around the x axis, we can arrive at a 3D model with the cell
body as a sphere with radius R, and the dendrite as a cylinder
with length L and radius w. Since the dendrite is very thin
compared to the soma, i.e., w�R, Eq. �1� remains valid. The

concentration in the sphere Ĉ1�r ,� ,�� and in the cylinder

Ĉ2�x ,� ,�� obey the diffusion equation with a homogeneous
degradation rate � as in Eqs. �2� and �3�, but now written in
n spherical and cylinder coordinates, respectively, where

[c
A

M
P

]
(µ

m
−2

)

0.25

4.0

FIG. 5. �Color online� Numerical results with degradation rate
�=10 s−1 for different widths of the dendrite w=0.5,1.0,
1.5,2.0 �m �from left to right, respectively�. Parameter values are
as in Fig. 4.
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0�r�R, 0����, 0�x�L, 0���w, and 0���2�.
Because of the symmetry around x axis, both concentration
fields are independent of � and they become effectively two

dimensional: Ĉ1�r ,� ,��= Ĉ1�r ,�� and Ĉ2�x ,� ,��= Ĉ2�x ,��.
In the 3D case, the constant cAMP source flux F has units

of 1 / �s �m2�, and the boundary conditions read as

�Ĉ1�R,��
�r

=
F

D
, ��0 � � � �,0 � � � 2�� , �B1�

�Ĉ2�L,��
�x

=
F

D
, �0 � � � w,0 � � � 2�� , �B2�

�Ĉ2�x,w�
��

=
F

D
, �0 � x � L,0 � � � 2�� . �B3�

Since w�R, we can approximate the junction of the sphere
and the cylinder to be a disk, and we require that the con-
centration and gradient at the dist to be continuous

Ĉ1�R,�� = Ĉ2�0,��, �0 � � 	 �0,0 � � � 2�� , �B4�

�Ĉ1�R,��
�r

=
�Ĉ2�0,��

�x
, �0 � � 	 �0,0 � � � 2�� ,

�B5�

where ��R�.
Therefore, the steady-state solution can be obtained as

Ĉ1�r,�� = �
m=0




B̂m
im�r/l�
im� �R/l�

pm�cos �� +
F

��D

1 + cos �0

2

i0�r/l�
i0��R/l�

+ �
n=1



F

��D

1

2
�pn+1�cos �0�

− pn−1�cos �0��
in�r/l�
in��R/l�

pn�cos �� , �B6�

Ĉ2�x,�� = �
n=0




Ân�ex��1/l�2+kn
2

+ e�2L−x���1/l�2+kn
2
�J0�kn��

+
F

��D

cosh�x/l�
sinh�L/l�

+
F

��D

I0��/l�
I0��w/l�

, �B7�

where in and Jn represent the modified spherical Bessel func-
tion of the first kind and Bessel function of the first kind,
respectively, kn is the nth root of J1�knw�=0, and Pn

m denotes

the Legendre function. Here pn= Pn
0. The coefficients B̂m are

determined by Ân through Eq. �B5�,

B̂m =
2m + 1

2
l�

0

�0

ĝ���pm�cos ��sin �d�, m = 0,1,2, . . . ,

�B8�

where ĝ��� is the flux from the dendrite to the soma, given
by

ĝ��� =
�Ĉ2�0,��

�x

= �
n=0




Ân�	1

l

2

+ kn
2�1 − e2L��1/l�2+kn

2
�J0�kn�� .

�B9�

To determine Ân, one needs to solve Eq. �B4�, which is a
difficult task.

Similarly to our two-dimensional case, we can consider
the limiting case w=�0=0, i.e., a sphere connected to a line.
We use ĉ1,2 to represent the concentrations for this limit case,

which can be related to Ĉ1,2 as follows:

ĉ1�r,�� = lim
�0→0

Ĉ1�r,�� , �B10�

ĉ2�x� = lim
w→0

�
0

2� �
0

w

Ĉ2�x,��d�d� . �B11�

The diffusion equation and boundary condition for ĉ1 are
identical to Eqs. �2� and �B1�, while the diffusion equation
for ĉ2 becomes one dimensional

0 = D
d2ĉ2

dx2 − �ĉ2 + 2f , �B12�

where f =�wF. The boundary condition is

dĉ2�L�
dx

= lim
w→0

�
0

2� �
0

w F

D
�d�d�

= lim
w→0

�
0

2� �
0

w f

�wD
�d�d� = 0 �B13�

and the continuity property at the junction reduces to

ĉ2�0� = lim
�0→0

�
0

2� �
0

�0

R2 sin �ĉ1�R,��d�d� = 0,

�B14�

� ĉ1�R�
�r

=
f

�wD
+

J

DR2�2��,�� , �B15�

dĉ2�0�
dx

=
J

D
, �B16�

where �2�� ,�� denotes the Dirac delta function in spherical
coordinates. Solving the above equations leads to an analytic
solution

J = 2fl tanh�L/l� , �B17�

ĉ1�r,�� =
f

�R2

tanh�L/l�
�

�
n=0




�2n + 1�
in�r/l�
in��R/l�

pn���

+
f

�w��D

i0�r/l�
i0��R/l�

, �B18�
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ĉ2�x� =
2f

�
−

2f

�

ex/l

1 + e2L/l −
2f

�

e�2L−x�/l

1 + e2L/l . �B19�

Comparing the coefficients of ĉ1,2 with those of Ĉ1,2 through
Eqs. �B10� and �B11�, we find

Â0 = −
F

�w

1

1 + e2L/l ,

B̂m = �2m + 1�
�wF

�R2 tanh�L/l� + o�w2� , �B20�

m = 0,1,2, . . . . �B21�

Therefore, we can obtain an approximate form for the con-
centration in the soma

Ĉ1�r,�� =
�wF

�R2 tanh�L/l��
n=0




�2n + 1�
in�r/l�
in��R/l�

pn�cos ��

+
F

2��D
�
n=1




�pn+1�cos �0�

− pn−1�cos �0��
in�r/l�
in��R/l�

pn�cos ��

+
F

��D

1 + cos �0

2

i0�r/l�
i0��R/l�

+ o�w2� , �B22�

and in the dendrite

Ĉ2�x,0� =
F

��D

cosh�x/l�
sinh�L/l�

+
F

��D

1

I0��w/l�

−
F

�w

cosh��L − x�/l�
cosh�L/l�

+ o	 1

w

 . �B23�

Furthermore, the gradient at the junction reads in this limit as

�Ĉ2�0,0�
�x

=
F

w��D
tanh�L/l� + o	 1

w

 , �B24�

similar in form to the two-dimensional case.
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